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Chapter 1: Introduction

Cancer is a disease that involves genetic and environmental factors. Knowledge

of the roles that genes play in a particular disease is rapidly helping us to understand

cancer biology. These functions differ significantly, for example, some genes can

contribute to determining the disease state (disease genes) while other genes can

interact with particular environmental factors in causing cancer (susceptibility genes).

Identifying the roles that genes play in a disease is not an easy task, it requires

rigorous biological experiments followed by statistical and computational analyses to

interpret the data. High-throughput technologies allow monitoring cell processes at

the molecular level.

One of the molecules that are typically measured is ribonucleic acid (RNA), par-

ticularly messenger RNA (mRNA). The mRNA is used as a proxy to determine gene

expression, i.e. the process by which a gene synthesizes to a gene product. These

measurements are taken with the purpose of identifying if a gene is over-expressed or

under-expressed. Using these technologies, conventional data analysis provides a list

of differentially expressed (DE) genes. This analysis is done by comparing the gene

expression from two groups and statistically identifying the genes that are signifi-

cantly different between the groups, e.g. one group of healthy individuals versus one

group of patients with the disease under study. Lists of DE genes are widely used.

However, these lists often fail to elucidate the underlying biological mechanisms.

In the last couple of decades, several approaches have focused on the interac-

tions between genes rather than the study of individual genes. These gene to gene

interactions are captured as graphs, named signaling pathways, with genes as ver-

tices and the types of interaction on the edges. Each signaling pathway describes

a cellular process and contains the genes and interactions that are involved in this

process. Researchers have been storing the knowledge about various pathways into
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many publicly available databases, such as Kyoto Encyclopedia of Genes and Genomes

(KEGG) [74], Biocarta [14], and Nature Pathway Interaction Database (NCI) [127].

Given the availability of such collection of pathways, researchers now could iden-

tify the pathways that are significantly impacted by a given condition. Identifying

pathways instead of genes increases the explanatory power and gives us a better un-

derstanding of the underlying biological phenomenon [77, 79, 102]. Many pathway

analysis methods have been developed to identify enriched or differentially regulated

pathways [9, 12, 44, 47, 137]. These methods can be divided into three different

categories: over-representation analysis (ORA), functional class scoring (FCS), and

pathway topology methods (PT) [41, 120].

The over-representation analysis (ORA) [141] identifies the pathways with differ-

entially expressed genes significantly greater than expected by chance. This approach

ignores all the gene interactions and assumes gene independence, resulting in an in-

correct hypothesis testing and thus leading to biased results. Functional class scor-

ing (FCS) methods, such as Gene Set Enrichment Analysis (GSEA) [137] and Gene

Set Analysis (GSA) [44], do not assume independence between genes [18, 35]. The

hypothesis of FCS methods states that well-coordinated small changes in relevant

genes can also have significant effects on pathways besides large changes in individual

genes. However, these approaches still do not take into consideration the interactions

between genes as described by the pathways, resulting in information loss which in

turn leads to both false positives, as well as false negatives [41]. Topology-aware

approaches, such as Impact Analysis [41, 140], analyze the pathways as graphs and

take into consideration the type and direction of each gene-gene interaction.

Pathway analysis methods using gene expression (mRNA) have achieved remark-

able results [9, 12, 44, 47, 77, 79, 102, 137]. However, mRNA alone is unable to

capture the complete picture of cell processes, as other entities also play important

roles. For instance, microRNAs (miRNAs) are newly discovered gene regulators that
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play a crucial role in diagnosis and prognosis for different types of cancer [88]. miR-

NAs are small RNA molecules capable of suppressing protein production by binding

to gene transcripts. In fact, more than 30% of the protein-coding genes in humans are

miRNA-regulated [89]. Given all the evidence of the miRNA’s relevance, hundreds

of thousands of miRNA targeting genes interactions have been experimentally vali-

dated and collected in public databases such as mirTarBase [65], miRWalk 2.0 [42],

miRecords [156], and TarBase 7.0 [129]. There are also several algorithms used to

predict miRNA targets [72, 85, 89] and databases with predicted interactions such as

miRanda [72], TargetScan [89], PicTar [85], and TargetRank [110].

In addition, relevant work has been done to elucidate the important interplay

between miRNAs and biological pathways [4, 19, 64, 65, 107, 148]. These studies

focus on different directions, some methods search for pathways that are targeted

by a particular miRNA [4], and others perform pathway analysis using just miRNA

expression, such as mirTar [64, 65] and DIANA-miRPath [148]. Other methods incor-

porate both mRNA and miRNA for pathway analysis [19, 107]. The earliest tool that

implements mRNA-miRNA integration is the miRNA and mRNA integrated analysis

(MMIA) [107] which performs Gene Set Analysis (GSA) of the down-regulated genes

that are targeted by up-regulated miRNAs. However, as mentioned before, GSA does

not take advantage of the knowledge captured by the pathway topology. The state-of-

the-art approach for miRNA-mRNA pathway analysis method is microGraphite [19]

which uses an empirical gene set approach. microGraphite’s primary goal is the iden-

tification of signal transduction paths that are mostly correlated with the condition

under study [97]. Functional analysis methods that include miRNA are still needed

to enhance the knowledge on disease gene regulation [28].

The major drawback of current approaches is that most of them do not take into

consideration the knowledge about the interactions between the genes, as well as be-

tween genes and miRNAs. In this thesis, we present mirIntegrator, a topology-aware
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approach that systematically integrates miRNA and mRNA expressions to identify

pathways that are significantly impacted by the studied condition. Our framework

is flexible and allows users to integrate signaling pathway databases with miRNA-

mRNA interaction databases to produce miRNA-augmented pathways. Here we show

that pathway analysis performed on these augmented pathways offer more statistical

power than performing analysis on gene-gene pathways. Our augmented pathways

offer a more comprehensive view and a deeper understanding of complex diseases.

This thesis encloses three contributions: a tool for integrating miRNA into signal-

ing pathways (mirIntegrator) [33], a publicly available miRNA-augmented pathway

database (mirAP), and examples of applying such augmented pathways to pathway

analysis [34, 32, 109]. Our pathway analysis pipeline uses mirAP and adapts Impact

Analysis (IA) [41, 140], a topology-aware pathway analysis method previously devel-

oped by our group. To demonstrate the advantage of our method, we analyze nine

real datasets studying seven different diseases with mRNA and miRNA expression.

We show that the proposed approach is able to identify the pathways that describe

the underlying conditions as significant. We compare our integrative method with

the traditional Impact Analysis and the state-of-the-art approach microGraphite [19].

The proposed method produces p-values and rankings of the disease pathways signifi-

cantly smaller than those obtained without data integration as well as those obtained

using microGraphite.
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Chapter 2: Related work

2.1 Biological background

This section provides a basic background in molecular biology which is key to

understand our proposed method. In particular, we present the central dogma of

molecular biology and introduce the function of microRNAs (miRNAs).

Molecular biology can be defined as the study of life at the molecular level. It is

an interdisciplinary approach that combines genetics (i.e. the study of heredity) and

biochemistry (i.e. the study of the chemistry of living things). Here, we are interested

in the molecular biology of the genes rather than other components of the cell, i.e.

the study of genes, how they translate to proteins, and its clinical significance. For

example, if we were interested in studying human skin cells we would consider both

disciplines: genetics and biochemistry. The genetics of human skin would focus on

identifying genes that have an influence on skin traits, such as the human TYRP1 gene

and the mutations in this gene that are associated with oculocutaneous albinism type

III [126] for example. The biochemistry of skin describes the chemical compounds

found in the skin, such as melanosomal proteins: tyrosinase, tyrosinase-related protein

1, and DOPAchrome tautomerase [131]. Finally, a comprehensive study would include

the TYRP1 gene, the regulatory mechanisms for which the gene translate into the

tyrosinase-related protein 1, and how these gene and protein relate to the occurrence

of oculocutaneous albinism type III [83].

Figure 2.1 illustrates a simple representation of the flow of genetic information

from genes to proteins. This process is known as the central dogma of molecular

biology which has two main steps: translation and transcription. First, a piece of

information in the DNA (a gene) is transcribed into messenger-RNA (mRNA) in the

cell nucleus. Then, the mRNA is transported to the cytoplasm to be translated into a

polypeptide chain (protein) by the action of a ribosome and multiple transfer-RNAs.
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Figure 2.1: The central dogma of molecular biology.

Credit: Nicolle Rager, National Science Foundation

The input material of transcription is deoxyribonucleic acid (DNA). The genetic

information necessary for cell functioning is carried in the form of DNA which is made

up of nucleotides. Each DNA nucleotide contains one of these four bases: adenine (A),

cytosine (C), guanine (G), or thymine (T). These bases bind nucleic acids together

by complementary pairing. Adenine base pairs with thymine and cytosine with gua-

nine (see Figure 2.2.b). The DNA structure contains two strands of complementary

nucleotide chains forming a double helix [153] as shown in Figure 2.2.a. Typically,

DNA is represented in a linear format as a sequence of nucleotides (see Figure 2.2.c).

The output of transcription is ribonucleic acid (RNA). DNA is transcribed to

messenger-RNA (mRNA) which is transported out of the nucleus. RNA is a single

strand of nucleotides (Figure 2.3.b), where each RNA nucleotide contains one of

these four nitrogen bases: adenine (A), cytosine (C), guanine (G), or uracil (U). In

transcription, each thymine base is copied as an uracil base. Typically, mRNA is

described in a linear format as a sequence of nucleotides (Figure 2.3.c).

Each triplet of mRNA nucleotides, named codon, is translated to an amino acid
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Figure 2.2: DNA structure and sequence representation. DNA sequence is typically rep-
resented in a linear format as a sequence of nucleotides: adenine (A), cytosine (C), guanine
(G), or thymine (T).

Credit: The protein data bank (PDB:3BSE) and wiki commons.

Figure 2.3: DNA is transcribed to mRNA. a) DNA. b) mRNA structure. c) mRNA
nucleotides sequence. In transcription, each adenine (A), cytosine (C), and guanine (G)
bases are copied identically. However, thymine (T) bases are copied as uracil (U) bases.

Credit: Wikimedia commons.
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(see Figure 2.4.a.). In humans, there are 20 types of amino acids, and each amino acid

is mapped from more than one codon. Figure 2.4.b. displays a codon wheel that shows

which codon encodes which amino acid. The inner circle is the first nucleotide in the

codon, the second ring the second nucleotide and the third ring the third nucleotide.

Amino acids are shown around the wheel. The amino acids translated from an mRNA

strand bond together to form proteins, i.e. polypeptide chains. Proteins are involved

in almost all functions in a cell.

There are two main categories of genes: protein-coding genes and non-protein-

coding genes (see Figure 2.5) Protein-coding genes are transcribed and then translated

into protein. Non-protein-coding genes are transcribed but never translated; their

final product is non-coding RNA (ncRNA). Gene expression is the process by which

a particular gene information (DNA) is transformed to a gene product, i.e. either

ncRNA or protein. The basic central dogma model does not include crucial ncRNAs,

such as microRNAs (miRNAs).

microRNAs (miRNAs) are small RNA molecules of approximately 22 nucleotides

capable of suppressing protein production by binding to gene transcripts (see Fig-

ure 2.6). In fact, more than 30% of the protein-coding genes in humans are miRNA

regulated [90]. Additionally, miRNAs have been shown to play a significant role

in diagnosis and prognosis for different types of diseases [88]. Several efforts have

been done to identify mRNA-miRNA target interactions, i.e. which miRNAs regu-

late which genes. Most microRNA-target interactions are statistically predicted, and

some are experimentally validated.

Given the importance of miRNAs, hundreds of thousands of miRNA-targeting-

genes interactions have been experimentally validated and collected in public

databases such as mirTarBase [65], miRWalk 2.0 [42], miRecords [156], and Tar-

Base 7.0 [129]. There are also several algorithms used to predict miRNA tar-

gets [72, 90, 85] and databases with predicted interactions such as miRanda [72],
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Figure 2.4: Translation from mRNA to proteins.

a. mRNA codons are translated to amino acids to form proteins.

b. The standard genetic code (or translation table) shows which codon encodes which
amino acid. The inner circle is the first nucleotide in the codon, the second ring the
second nucleotide and the third ring the third nucleotide. Amino acids are shown
around the wheel.

Credit: Wikimedia commons.
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Figure 2.5: Gene product

Credit: Wikimedia commons.

Figure 2.6: MicroRNAs bind to mRNA molecules and prevent translation.

Credit: U.S. National Institute of General Medical Sciences
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TargetScan [90], PicTar [85], and TargetRank [110]. There are also find miRNA-

disease interaction databases [65, 70, 91] which are growing rapidly.

2.2 Current pathway analysis methods

High-throughput molecular biological methods perform thousands of simultaneous

measurements of biological molecules to observe a particular state of cells. Recent

technologies have extended the breadth of available high-throughput molecular bio-

logical data. Nowadays, most of the molecular data types are analyzed separately

which has provided important discoveries, such as biomarker identification. However,

analyzing various data types together can lead to a more consistent understanding of

cell processes [50].

The term high-throughput data is used here as large measures of genetic data

taken in a short time. These data are generated by different technologies commonly

referred as “omics technologies” which are the foundation for systems biology [117].

Omics seek to quantify, describe, and identify all of the components of cellular sys-

tems with spatial and temporal dimensions [123]. There are several data types of

high-throughput measurements from which four categories are the most important:

proteomics, transcriptomics, metabolomics, and genomics [157]. Proteomics is the

study of proteins present in cells. Transcriptomics measures all gene expression values.

Metabolomics aims for the quantification and identification of metabolites. Genomics

includes the large-scale genotyping of SNPs (single nucleotide polymorphisms). Each

of these data types is unique and provide different perspectives on the cellular pro-

cesses.

There are several computational solutions for analyzing omics data in isolated

fashion [11]. However, single data type analyses have not given enough understand-

ing for successfully perform disease diagnosis and treatment. Some of the ultimate

goals for integrating multiple-omics are the identification of pathways relevant to a
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condition and disease subtyping.

The identification of pathways that are involved in a particular phenotype is

typically referred as pathway analysis. Identifying pathways that are relevant to a

condition is important because it gives insights that can be used to further disease

treatment or diagnosis. The standard input of pathway analysis techniques is the

log-fold change of a large set of genes (around 25,000). Fold change is computed as

the ratio of gene expression between two different groups, commonly one group of

control subjects and another group with patients. The output of pathway analysis is

a ranked list of statistically significant biological pathways. These pathways are con-

sidered to be related to the condition under study. Biological pathways are graphical

representations of common knowledge about genes and their interaction with biolog-

ical processes. In particular, signaling pathways are represented as graphs with a

set of genes as nodes and the biochemical and physical interactions as edges. These

pathways are typically made by mining the literature and then manually curating the

retrieved information [74]. Signaling processes of the cell are captured in pathways

that describe the interactions between protein-coding genes and DNA [79].

Disease subtyping is another important goal for omics integration. Generating

clinical meaningful disease subtyping is critical for prognosis and further treatment

determination. Based on statistical information and the patient’s profile, the objective

is to identify the subtype of disease that the patient more likely belongs to. The input

for disease subtyping is molecular and clinical data from several patients with the same

condition but have different outcomes. The expected output is well-identified groups

that highly correlate with the observed outcomes (e.g. a group of long-term survival

patients and another group of short-term survival patients). It is also important

to identify possible patterns that are shared among members of each subtype and

differences with other subtypes. This is commonly expressed as a clustering problem

where the main goal is to search for similarities among the data points.
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All these applications show how important is integrating various biomolecular

data types. There are more applications of data integration, such as signaling

networks reconstruction [30, 53, 81, 105] and biological networks visualization [133],

but here we focus on pathway analysis.

From the computer science perspective, the term data integration refers to the

integration of fragmented information from different physical databases or data ware-

houses and different representations. Several authors have proposed platforms and

languages to integrate databases (typically using XML) [1]. Even though data frag-

mentation is a significant problem, we are not studying here that type of data integra-

tion. In bioinformatics, the terms data integration and data fusion are synonymous.

In computer science, data fusion is referred as the process of integrating information

acquired from various heterogeneous types into a single compound knowledge. Here,

we define data integration and data fusion as the integration of knowledge without fo-

cusing on the representation. Additionally, data fusion is valuable for acquiring more

reliable information than the raw measurements from a single type of source. The

primary issue in data fusion (DF) is to provide fused data with increased correctness,

conciseness, and completeness when compared with the original disjoint data. Cor-

rectness measures whether the fused data conform to the reality of the object under

study. This occurs when more than one data source can confirm the same hypothesis

which increases the confidence of the data. Conciseness refers to the reduction of am-

biguity which means that the fused data from multiple sources have decreased the set

of hypotheses about the object of study. Finally, completeness measures the amount

of information from the fused data which increases the robustness because one mea-

surement can contribute information where others measurements are incapable. To

make this process successful, we need to define an outline for resolving conflicts. Data

conflicts can occur when there is uncertainty or when there are contradictions. Un-
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certainty occurs when there is missing information, such as gene levels not included

in the measured platform, or in a particular sample. A contradiction occurs when

there is not missing information, but the information that we can extract from one

source is completely different to the one that can be obtained from another source.

Data fusion techniques have been applied mainly to the graphical computation

context. Numerous data fusion algorithms have been developed giving users different

levels of detail. Some technologies have been categorized by the USA Joint Directors

of Laboratories [92] into three basic levels according to the amount of information

that they provide. The first level corresponds to raw data uncorrelated. The second

level, or feature level, provides a greater degree of inference and some interpretative

meaning. Finally, the third level, or decision level, delivers additional explanatory

meaning. It is designed to provide recommendations to users.

In the high-throughput biomolecular data context, data integration is typically

performed in four different manners. One is to analyze each data type separately first

and then integrate the final findings. Another manner is to pre-process each type of

data independently, then perform cross-platform normalization across the data types,

then combine the normalized figures and finally perform and overall analysis. The

third type of integration consists of performing a statistical integration. The fourth

approach is to integrate the data by modeling the data types based on the biological

meaning of the molecules and their interactions (see Figure 2.7).

For example, researchers have integrated mRNA and microRNA paired data by

analyzing each data type independently and then interpreting the results manu-

ally [25]. Sometimes the results of these experiments can lead to conflicting and

unexplained outcomes. A second scenario is given when researchers having sample-

paired data decide to merge the two data tables into a single table and analyze this

new merged table. This practice requires cross-normalization, and it is very dangerous
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Figure 2.7: Classification of integrative methods for hight-throughput biomolecular data

because each data type has different scales, volumes, and properties.

2.2.1 Integration of multi-omics data

During the last two decades, immense progress has been made toward understand-

ing the molecular processes that are altered in cancer patients. Traditional approaches

compare gene expression levels between samples of cancer patients and normal individ-

uals. Integrating gene expression with other data types has become the new challenge

in our age. Integrative approaches have shown to be successful in finding cohesive per-

spectives of complex cellular systems [15, 87, 112]. Yet, analyzing multiple data types

is extremely difficult due to data heterogeneity and high-dimensionality. To give an

example of the magnitude of this problem, The Cancer Genome Atlas1 (TCGA) [142]

portal contains datasets from nine data levels (excluding clinical data and images)

for a total of 26 different data types (see Table 2.1). Life scientists that intend to an-

1TCGA is an effort of the National Cancer Institute (NCI) and the National Human Genome
Research Institute (NHGRI).
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Table 2.1: Data types available on TCGA.

Data Level Data Type
Microsatellite Instability (MSI) Microsatellite Instability (MSI)
DNA Sequencing Whole exome sequence
DNA Sequencing Whole genome sequence
DNA Sequencing Trace-Sample Relationship
DNA Sequencing Mutations
miRNA Sequencing miRNA sequence
miRNA Sequencing Isoform
Protein expression Protein expression
mRNA Sequencing mRNA sequence
mRNA Sequencing Exon
mRNA Sequencing Gene sequence from mRNA
mRNA Sequencing Splice
mRNA Sequencing Isoform
Total RNA sequence Total RNA sequence
Total RNA sequence Exon
Total RNA sequence Gene sequence
Total RNA sequence Splice Junction
Total RNA sequence Isoform
Array based expression Gene expression
Array based expression Exon
Array based expression miRNA
DNA Methylation Bisulfite sequencing
DNA Methylation Array based
Copy number variation SNP array
Copy number variation CN array
Copy number variation Low-pass DNA sequencing

alyze these datasets in pairs would have to perform 324 different analyses to compare

every possible pair of data types. To help biologists to analyze this complex data

flood, bioinformaticians have been developing computational methods that facilitate

the integration of multiple omics.

A vast amount of high-throughput data has been accumulated in many publicly

available repositories, such as Gene Expression Omnibus [7, 43], The Cancer Genome

Atlas [142], and ArrayExpress [17, 125]. To take advantage of this information, re-

searchers are trying to integrate data from multiple datasets and multiple measure-

ments of the same set of patients from different sources. There are two general
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directions to integrate data: i) horizontal meta-analysis and ii) vertical multi-omics

analysis [146]. Horizontal meta-analysis is also known as cross-cohort data integra-

tion. Its purpose is to integrate the same type of data from independent but related

studies. A vertical multi-omics analysis integrates multiple types of data from the

same set of patients. Both of these can also incorporate information from biological

pathways or other knowledge databases. These studies require interdisciplinary ex-

pertise, such as molecular biology, statistics, and computer science. In this thesis, we

focus on vertical multi-omics analysis and investigate integrative approaches in the

domain of pathway analysis.

2.3 Pathway analysis

This section is organized as follows. First, we briefly introduce a typical com-

parative analysis, we discuss the importance of pathway analysis using only gene

expression, and we describe the existing knowledge-based pathway analysis methods.

Third, we explain the need for multi-omics data integration to identify the impacted

pathways for a better understanding of the biological mechanisms that are relevant to

the disease under study. Finally, we summarize the main strategies used to integrate

multiple data types for the purpose of pathway analysis.

2.3.1 Pathway analysis using gene expression

High-throughput technologies for gene and protein profiling, such as DNA microar-

ray or RNA-Seq, have transformed biomedical research by allowing for comprehensive

monitoring of biological processes. A typical data analysis often yields a set of genes

that are differentially expressed (DE) when comparing patients versus healthy sam-

ples. The lists of DE genes helps to identify genes that take part in the underlying

phenomenon. However, there are two drawbacks. First, they often fail to reveal the
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underlying mechanisms [79, 145]. Second, independent experiments often yield com-

pletely different lists of DE genes, making the interpretation extremely difficult [138].

High-throughput technologies for gene and protein profiling, such as DNA microar-

ray or RNA-Seq, have enhanced biomedical research by allowing for comprehensive

monitoring of biological processes. Typical data analysis often yields a set of genes

that are differentially expressed (DE) when comparing two groups, e.g. patients with

a given condition versus normal samples. The selection of DE genes is made by

comparing the distributions of the two groups using statistical tests, such as t-test.

The obtained p-value is then compared with a chosen significance level (usually, p ≤

0.05) and the fold change is compared with a predefined threshold (< 1.5 or 2) [66].

The lists of DE genes help to identify genes that take part in the underlying phe-

nomenon. However, there are two drawbacks. First, they often fail to reveal the

underlying mechanisms [79, 145]. Second, independent experiments of the disease of-

ten yield completely different lists of DE genes, making the interpretation extremely

difficult [45, 46, 138].

To address this challenge, researchers have developed a large number of knowledge

bases. Biological processes, in which genes are known to interact with each other, are

described in pathway databases, such as Kyoto Encyclopedia of Genes and Genomes

(KEGG) [74, 111], or Biocarta [14]. Pathway analysis methods [47, 66, 79, 84, 102]

have been developed to identify pathways that are related to the condition under

study.

There are three main strategies for pathway analysis using gene expression data:

over-representation analysis (ORA), functional class scoring (FCS), and pathway

topology (PT) based methods. The input of pathway analysis in general consists

of two parts: i) the molecular measurements using a high-throughput technology,

e.g. gene expression, and ii) functional annotations of the corresponding genome,

e.g. a pathway database. Gene expression data is often presented as a matrix where
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the columns represent the samples and the rows represent genes. For example, a

DNA microarray assay [38, 52] of 20 diabetes patients and 10 healthy patients can

be presented as a matrix of 30 columns and about 20, 000 rows. Each column repre-

sents a patient while each row represents the expression of a gene across all patients.

The second input, the pathway database, is a list of known functional gene modules.

A functional module can simply be a set of genes [3, 6, 20, 23, 101, 100] that are

known to be involved in a biological process, or can be a complicated network or

graph where the nodes represent genes and the edges represent interactions between

genes [26, 73, 74, 75, 111, 98].

The earliest pathway analysis methods use the over-representation analysis

(ORA) [9, 12, 37, 40, 78, 96] to identify the gene sets that have more differentially

expressed genes than expected by chance. This approach starts by identifying genes

that are differentially expressed between the two phenotypes, e.g. disease versus con-

trol. Statistical methods for identifying DE genes include t-test [58, 116], regularized

t-test [5, 62], and linear models [135]. For each pathway, ORA calculates the prob-

ability of obtaining the same number of DE genes or more, using hypergeometric or

Fisher’s exact test [48].

The ORA approach is available in a large number of tools and has widespread

usage [79]. However, ORA has a number of limitations. First, this approach only

takes into consideration the number of DE genes and completely ignores the change

in expression, i.e. it ignores gene expression values. However, gene expression and

fold-change can be useful in assigning different weights to the DE genes. Second,

ORA typically uses the most significant genes and completely ignore other genes.

For example, genes that are marginally less significant, e.g. p-value = 0.011, are not

considered resulting in information loss. Finally, ORA assumes that the difference

in expression of a gene is independent of the other genes. However, this assumption

is invalid since biological systems are complex systems of interactions between genes
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and their products. This assumption ignores the structural correlation between genes,

resulting in incorrect hypothesis testing and thus leads to biased results.

The second class of methods in pathway analysis is the functional class scoring

(FCS). Methods in this class include the gene set enrichment analysis (GSEA) [137,

104], gene set analysis (GSA) [44], sigPathway [144], Category [71], SAFE [8],

GlobalTest [57], PCOT2 [82], SAM-GS [35], Catmap [18], FunCluster [63], and

PADOG [139]. The hypothesis of this approach is that not only large changes in

individual genes can have significant effects, but well-coordinated small changes in

functionally related genes can also have significant effects on pathways. FCS meth-

ods mainly consist of three steps. First, they calculate the gene-level statistics, i.e.

differential expression of individual genes between two phenotypes. Examples include

correlation [115], Q-statistic [57], t-test [2], or Z-score [80]. Second, they aggregate

the gene-level statistics into pathway-level statistics, one for each pathway. Existing

pathway-level statistics include Kolmogorov-Smirnov (used in GSEA) [104, 137], sum,

mean, or median of gene statistics for all genes in the pathway (used in Category) [71],

or the maxmean statistic (used in GSA) [44].

The strategy used in FCS methods offers a great improvement over ORA methods.

However, it also has several limitations [79]. First, although FCS methods do not

assume the independence between genes, they still assume the independence between

pathways. However, this is not true because a gene can function in more than one

pathway. Therefore, FCS methods fail to address the crosstalk between pathways

and thus lead to biased analysis and increasement in false positives. Second, they

do not take into consideration the interaction between genes. For example, consider

a gene that is known to interact with many other genes in a pathway. A significant

change in expression of this gene would result in a large perturbation in the pathway.

This gene should be weighted much more than a gene that does not interact with any

other genes.
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The third class of pathway analysis methods is pathway topology-based ap-

proaches (PT) [41, 55, 56, 67, 68, 120, 134, 140, 154]. Methods in this class in-

clude ScorePAGE [120], impact analysis (IA) [41], signaling pathway impact analysis

(SPIA) [140], NetGSA [134], TopoGSA [56], DEGraph [68], MetPA [154], BPA [67],

and EnrichNet [55]. These methods take advantage of the interaction between

genes provided in the pathway databases. Some PT methods, such as IA [41] and

SPIA [140], model each pathway as a directed graph, where the nodes are genes or

gene products and the edges are the known interactions between the nodes. These

methods perform two statistical tests. The first test focuses on the differential expres-

sion of genes falling on a given pathway. The p-value of this first test can be obtained

from ORA or FCS methods described above. The second test focuses on the number

of perturbation factors accumulated on the given pathway. This test is concerned

with the topological position, magnitude and sign of changes in expression of genes

in the given pathway. The null distribution of the pathway perturbation is obtained

by permuting the genes at different locations in the pathway graph. The two p-values

obtained from the two independent tests are then combined using Fisher’s method.

2.3.2 Pathway analysis using multi-omics data

Although pathway analysis using gene expression has achieved applaudable re-

sults [79], recent research has proven that integrating heterogeneous types of data

offers a more comprehensive view of complex cellular systems [106], resulted in a

wave of methods for the purpose of data integration [21, 86, 130, 152]. We divide

multi-omics pathway analysis methods into two categories: topology-aware meth-

ods and non-topology aware methods. Topology-aware approaches incorporate gene

topology and interactions between entities into the analysis, i.e. methods that make

use of nodes and edges of the pathways. Non-topology aware methods are methods

that treat a pathway as a set of genes or entities without considering their topology
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Figure 2.8: General overview of multi-omics pathway topology techniques. The input
of these techniques includes different types of molecular measurements for the same set of
patients, and pathway knowledge from the databases. The output is a list of pathways
ranked according to their statistical significance, e.g. p-values or scores.

or interactions.

Figure 2.8 shows the overall pipeline of integrative pathway analysis methods.

The input includes a set of signaling pathways and experimental data from multiple

data types coming from the same set of patients. Integrative methods output a list

of pathways ranked by statistical significance, i.e. p-value or score.

2.3.3 Topology-aware integrative methods

Topology-aware integrative methods are based on the hypothesis that incorporat-

ing the structure of biological processes on the analysis will provide better results.

We have reviewed several methods of this type [21, 86, 130, 152] and identified two

main categories, graphical extensions and probabilistic graphical models. Methods

belonging to the first category extend the existing signaling pathways with molecules
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or nodes that were not included in the original pathways. Methods belonging to the

second category transform pathways to probabilistic graphical models and include

additional relations among multiple types of data.

Methods in the first category expand the existing graphs by adding new nodes,

relations, and interactions to use traditional pathway analysis methods on the ex-

panded graphs. The added nodes and relations represent the new molecules or new

data types. After the pathways are expanded, the integrative pathway analysis prob-

lem can be mapped to the classical pathway analysis, where the original pathways

are replaced with the expanded pathways, and the gene expression data is replaced

with multi-omics data. The main advantage of this approach is that traditional meth-

ods have been evaluated and accepted by the scientific community; therefore, can be

adapted rapidly to expanded networks. The main disadvantage of this approach is

that some data types cannot be mapped directly to gene interactions because their

effect on gene expression is not completely understood, for example, DNA methyla-

tion data [59]. Given that current signaling pathway databases contain information

about gene interactions and ignore remaining data types, enhancing them is cru-

cial [113, 119].

One data type that can be easily integrated to current pathways is microRNAs

(miRNAs). miRNAs are gene regulators that have shown to play important roles

in the development of cancers and many complex diseases [88, 93]. Relevant work

has been done to elucidate the important interplay between miRNAs and biological

pathways [4, 19, 64, 65, 107, 148]. The state of the art approach for miRNA-mRNA

pathway analysis is microGraphite [19] which uses an empirical gene set approach.

microGraphite’s main goal is the identification of signal transduction paths correlated

with the condition under study [97]. microGraphite integrates miRNA and mRNA

expressions by wiring the miRNA-mRNA interactions into the formal pathway repre-

sentations. After expanding the pathway, microGraphite performs pathway analysis
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using a method previously proposed by their authors named CliPPER [97].

The pipeline of microGraphite consists of five steps. In the first step, micro-

Graphite integrates microRNAs into existing pathways downloaded from pathway

databases, such as Kyoto Encyclopedia of Genes and Genomes (KEGG) [74, 111],

Nature Pathway Interaction Database (NCI) [127], Reactome [73], or Biocarta [14].

There are two types of microRNA-target interactions that are integrated to the

pathways: in-silico predicted interactions and validated interactions. Validated

interactions are obtained from miRecords[156] and mirTarbase [65]. In the second

step, microGraphite performs pathway analysis to obtain an initial set of significant

pathways. In the third step, it carries an analysis across the significant pathways

to score the coherent paths inside the pathways. In the fourth step, microGraphite

selects the paths with the highest score and then join these paths to form a connected

network called meta-pathway. Finally, microGraphite performs pathway analysis

among the paths to identify the most significant paths. The authors validated

their pipeline on an ovarian cancer dataset, obtaining a meta-pathway that guided

biological experiments further performed by them.

Methods in the second category use graphical models, such as Bayesian networks

and factor graphs, to represent the interaction between data types and gene expres-

sion. These models are more versatile because they can describe more complex type

of interactions. These methods rely on the fact that each type of genomic data con-

tains valuable information, so integrating them in an equivalent variable makes the

analysis more complete.

An example of these approaches is PARADIGM [147]. This method integrates

and analyzes different types of genomic data by producing a single measurement

called Inferred Pathway Activity (IPA). Having an IPA per patient allows us to per-

form pathway analysis for an individual while current approaches need a group of
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Figure 2.9: An example of factor graphs. This factor graph represents a global function G
as the product of the local functions f1, f2, f3, and f4. Black squares of the graph represent
local functions or factors and circles represent variables. Each factor is a function of its
neighbor variables.

samples. In order to compute the IPA, PARADIGM connects the different types of

measurements by adding causal-effect relations and the interaction between genes in

a factor graph model (see Figure 2.9). Then, the likelihood of having a gene activated

or not in each particular cancer patient and the IPA per gene is computed by per-

forming a Bayesian inference algorithm. The method was evaluated by performing

pathway analysis in two different diseases, breast cancer and glioblastoma multiform

(GBM), and comparing the results with those obtained with SPIA [140]. The authors

claimed that PARADIGM analysis generates fewer false positives, and they were able

to identify different groups of GBM with significantly different survival profiles [147].

However, in spite of numerous efforts, we were not able to reproduce these results.

This method has been included as an official tool into The Cancer Genome Atlas

(TCGA) [142].

Figure 2.10 shows a pathway example with three nodes: MDM2, TP53, and Apop-

tosis; and two relationships: MDM2 represses TP52 and TP52 activate Apoptosis.

The fist step of PARADIGM is to represent the pathway as a probabilistic model us-

ing factor graphs (see Figure 2.9). A factor graph is a bipartite graph that represents

a global function as the product of local functions [128]. Each of the local functions
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Figure 2.10: An example of the pathway model to compute IPA [147]. The biological
pathway contains three entities MDM2, TP53, and Apoptosis. The omics data of every
entity is translated to variables in a logic representation DNA, mRNA, Protein, Protein
activity, and Apoptosis. The links among variables are labeled accoring to the logical
interpretation of the biological pathway.

is a factor and is represented in the graph as a black square. Each factor has its own

variables and the global function will be represented in terms of the overall sets of

variables. The authors represent every data type as a variable in their model. The

molecules included in the model are protein-coding genes, small compounds, protein

complexes, gene families, and abstract processes. Protein-coding genes are measured

with four data-types: copy number variation (CNV), mRNA expression (mRNA),

protein level (protein), and protein activity status (activity). In this toy example

(Figure 2.10), we have two protein-coding genes (MDM2 and TP53) and one abstract

process (apoptosis). Therefore, we have four variables per each gene and one vari-

able for the process. The authors also defined a set of labels to apply depending on

the type of relationships among components. In this example, the relationships are

“activation” and “repression” and the labels “positive” and “negative” are respec-
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tively applied. Now that the variables and relations are identified, we can construct

the factor graph. Each variable will represent a differential state of each entity in

comparison with a control level. The possible states can be activated, nominal, or

deactivated. A factor is attached to each variable and represents the expected state of

such a variable. To decide the state of the variables, a voting system will be applied

as described on Figure 2.11. For each link of a variable on the factor graph, the

algorithm starts checking the type of label assigned: minimum, maximum, positive,

or negative. If the label is minimum, the vote is computed as the minimum state

among the parent variables connected to such a link. If the label is maximum, the

vote is computed as the maximum state among the parent variables connected to

such a link. If the label is positive, the vote is the same state of the parent connected

to such a link. If the label is negative, the vote is computed as the inverse state of the

parent connected to such a link. Once the votes of all the edges are counted, the next

expected state is equal to the state with more votes. If there is a tie, the expected

state is -1.

The second step is to define the prior probability. For this, the authors use

the expectation maximization algorithm [31, 61, 99] to estimate if a particular

hidden variable is likely to be in a particular state. Once the prior probabilities

are estimated, they use a belief propagation algorithm [49] to find the maximum

likelihood that a variable is in a particular state along with all the other observations

made for the patient.

2.4 Omics integration for disease subtyping

A vast majority of the diseases develop differently making them heterogeneous.

Precise classification of patients into subtypes has important indications for medicine.

Moreover, identifying subtypes that are relevant to survival profiles or related to bi-
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Figure 2.11: Algorithm to decide if an entity is active of not based on its labels. For
each link of a variable on the factor graph, we start by checking the type of label assigned:
minimum, maximum, positive, or negative. If the label is ‘minimum’, the vote is computed
as the minimum state among the parent variables connected to such a link. If the label
is ‘maximum’, the vote is computed as the maximum state among the parent variables
connected to such a link. If the label is ‘positive’, the vote is the same state of the parent
connected to such a link. If the label is ‘negative’, the vote is computed as the inverse state
of the parent connected to such a link. Once the votes of all the edges are counted, the next
expected state is equal to the state with more votes. If there is a tie, the expected state is
-1.
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ological patterns is crucial. This is to identify more homogeneous disease subtypes

and their corresponding genetic signatures. Subtype distinction can advance diagno-

sis classification which can improve clinical decision and treatment matching. Most

methods for disease subtyping perform clustering using clinical data from patients.

These methods do not use molecular measurement and the outcome subtypes are

prone to be suboptimal [136].

A contemporary method that integrates genetic data for disease subtyping is SNF

(Similarity Network Fusion) [152]. The input of SNF includes multiple matrices for

the same set of patients, each matrix is the molecular measurement of a data type.

SNF first constructs a patient similarity matrix (PSM) for each data type based on

Euclidean distance. It then constructs a patient similarity network for each data type

where the nodes are patients and the edges are the similarity between them. It then

iteratively fuses these networks into one network that represents the overall similar-

ity between patients for the multi-omics data. In each iteration, the fused network

discards the weak similarities to eliminate contradictions. After each iteration, the

networks from multiple data types are more similar to each. The algorithm stops

when the networks are identical. Finally, a similarity-based clustering, such as spec-

tral clustering [108], is performed on the fused network to identify subtypes of the

disease.

The authors validated the discovered subtypes using Kaplan-Meier survival curves,

Cox regression [24, 143], and Silhouette score [124]. The method is compared with ex-

isting methods, such as iCluster [132] and Consensus Clustering [103]. The data anal-

ysis was done using five different cancer datasets downloaded from TCGA: glioblas-

toma multiform data (GBM), breast invasive carcinoma (BIC), kidney renal clear cell

carcinoma (KRCCC), lung squamous cell carcinoma (LSCC), and colon adenocarci-

noma (COAD). For all the five datasets and all the metrics used, SNF achieved the

best result.
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Cox log-rank test is one of the methods to decide if certain groups have clearly

different survival behavior or not. This method is used in survival analysis. Survival

analysis is performed in studies that aim to investigate the change of state of a

variable. In this context, we refer to studies that investigate life duration of the

certain sample. The basic setup for the analysis is that certain subjects (e.g. cancer

patients) are tracked over time until the event happens (e.g. death) or the subject

is lost from the sample and cannot be track anymore (e.g. patients do not return to

the center that is performing the study and the center does not know if the patient is

alive or not). Survival in this context means how long people stay in the sample. At

the beginning of the study all the subjects are in the sample; therefore, the survival

is 100%. Over time, events start happening and the survival start decreasing until

the study is over. Typically, the analysis will include a survival curve to visualize

the behavior of survival over time. It also includes hazard rates, which represent the

risk of failure or what is the chance that the event will happen before a certain time

period. In this case, the hazard is the probability of dying at a particular moment.

The dependent variable is the duration of measurement wich is a combination of

three variables the time variable (the length of time until the event happened or

being in the study), the event variable (1 if the event happened or 0 if the event

has not happened yet), and the censored variable (indicating if the measurement was

taken or not). These survival studies can have several extensions, one of these is the

use of more that one group of participants in the same study. Survival analysis can

be made for nonparametric models, parametric models, or semi-parametric models.

Nonparametric models are useful for descriptive purposes and to visualize the shape of

the survival and hazard functions before using a parametric model. Hazard curves are

nonmonotonic and survival curves are strictly non-increasing curves. There are two

estimators commonly used for non-parametric models: Nelson-Aalen estimator of the

cumulative hazard function and The Kaplan-Meier estimator for the survival function.
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Once the nonparametric model has been run, one can include some independent

variables that may affect those functions by using a parametric or semi-parametric

model. These models depend on the form of the functions. The Cox proportional

hazard model is used for estimation of semiparametric models. The cluster number is

are included on the survival analysis as an independent variable. A comparison of two

survival curves can be performed using the statistical hypothesis test named log-rank

test. It tests the null hypothesis that there is zero difference between the survival

curves. The dependent variable for this model is the hazard [13]. The p-value of the

test indicates if the difference between groups borders on the statistical significance or

not, to determine if there is strong evidence that a variable is associated with length

of survival. The Cox regression test is useful to find which variables are significant

for the complete set of samples. The Log-rank Mantel-Cox test is a test for two or

more groups and aims to tell if these groups have different survival curves. When

comparing more that two groups, correction for multiple comparisons is needed.

In SNF, the validation of label prediction was achieved by comparing SNF with

two other approaches, PAM50 and iCluster. They used breast cancer data from the

Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) [27]

and computed the Cox log-rank test p-values for each of the methods. They also

computed the concordance index (CI) [60] for discovery and validation cohort for risk

of death prediction. The authors also presented a general validation of the fused

network by comparing the Cox log-rank test p-values obtained when using individual

data types versus the fused data. For this experiment, they used the five cancer data

sets from TCGA mentioned before: GBM, BIC, KRCCC, LSCC, and COAD.
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Chapter 3: Integrating signaling pathways with

miRNA target genes: our proposed method

In this section, we propose an algorithm for integrating miRNA into signaling

pathways. The integration of miRNA into signaling pathways have multiple applica-

tions, such as pathway analysis and disease subtyping. We also describe a pipeline

to use the miRNA-augmented pathways (mirAP) in the context of pathway analysis

(PA). This analysis is used in biological studies comparing genetic samples from two

different phenotypes (e.g. disease vs. control samples). Our PA pipeline integrates

miRNA and mRNA expression data and identifies pathways that are related to the

disease under study. The standard input of pathway analysis includes gene expression

data from two different phenotypes and a set of signaling pathways. The input of our

pathway analysis includes miRNA and gene expression data comparing two different

phenotypes (e.g. condition vs. control) and a set of signaling pathways and a list of

miRNA-gene interactions.

3.1 Proposed integrative pathway analysis pipeline

3.2 Pathway analysis pipeline

The identification of pathways that are significantly perturbed in a given pheno-

type helps us understand the underlying biological processes. Traditional pathway

analysis techniques aim to infer the impact on individual pathways using only gene

expression measurements (mRNA). However, gene expression does not capture the

complete picture of the biological mechanisms involved, as many other entities play

important roles in the processes. By ignoring them, we ignore potentially crucial in-

formation. One type of these entities is microRNA (miRNA), newly discovered gene

regulators that have been shown to play a significant role in diagnosis and prognosis
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Figure 3.1: Workflow of pathway analysis using augmented pathways.

for different types of diseases [88].

Researchers investigating miRNA cannot perform pathway analysis using tradi-

tional techniques because current pathways datasets do not contain miRNA-target

interactions. Our pipeline fills this gap by integrating miRNAs into signaling path-

ways.

Our pathway analysis pipeline consists of three main steps (shown in Figure 3.1):

1. In the first step, we find the miRNAs that target the genes of each signaling

pathway. miRNA-targets can be identified with existing algorithms for predic-

tion of miRNA-targeting [72, 89, 85, 110] or by using databases of validated

miRNA-target interactions [65]. Our implementation allows the use of predicted

or validated interactions or a mix of both. The user can provide custom inter-

actions our use the default database that we provide with the package which is

mirTarBase [65].

2. In the second step, we augment the signaling pathways with the miRNAs iden-

tified in the first step. The output is a list of miRNA augmented pathways.
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At this point, the data integration problem is mapped to the original pathway

analysis problem for which existing methods can be applied. The difference is

that here both miRNA and mRNA expression can be taken into consideration.

3. In the third step, we apply any pathway analysis that uses fold change and p-

value as input, e.g. Over-representation analysis (ORA) [40] and Impact Anal-

ysis [41, 140]. ORA and Impact Analysis are well-known methods developed

by our group to identify signaling pathways that are impacted by the effects of

diseases. Fig. 3.1 displays the overall pipeline of our approach.

3.2.1 Impact analysis using mRNA and miRNA

Impact Analysis is a topology-aware method that combines two types of evidence:

i) the over-representation of DE genes (ORA) [40], and ii) pathway perturbation

caused by disease, as measured by propagating expression changes through interac-

tions between the genes. These two types of evidence are captured by two independent

p-values: pORA and pPERT . To calculate pORA on the miRNA augmented pathways,

we use the following information: i) the total number of entities (genes and miR-

NAs) taken into consideration, ii) the entities belonging to the augmented pathways,

iii) the entities that are differentially expressed (DE), and iv) the entities that are

differentially expressed in the given pathway. The first input is the total number of

genes and miRNAs that were measured. The second input includes the genes of the

pathway and the miRNAs that target at least one gene in the pathway. The third

and fourth inputs are calculated from the input lists of DE genes and DE miRNAs.

We perform a modified t-test [122] on both gene and miRNA expression separately.

The significance threshold to determine the genes and miRNAs that are differentially

expressed is set to 5%.

To calculate pPERT , we use the following information: i) the entities that are

differentially expressed, and ii) a graph that represents the augmented pathway. The
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first input can be determined using the modified t-test for each data type [122] while

the second input is constructed in the first step of the approach. These two p-values

are combined using Fisher’s method [48] to get a single p-value that represents how

likely the pathway is impacted by the effect of the disease.

The combination of p-values provides a significant advantage to our approach

because we do not require additional cross-platform normalization between mRNA

and miRNA data. In other words, our method combines the p-values independently

of the technologies or platforms used to measured miRNA and mRNA. In this way,

we avoid additional statical error due to cross-platform normalization.

3.3 Proposed algorithm for pathway augmentation

Our method augments the graphical representation of original signaling path-

ways with interactions between miRNAs and their target genes. The input of this

method includes a set of signaling pathways and known miRNA-mRNA interactions

(Fig. 3.1a,b). The output is a set of augmented pathways that consists of the original

genes, the miRNAs that target those genes and their interactions. Let P = (V,E) de-

note the graphical representation of the original gene-gene pathway, and T : M → V

a function that identifies the target genes of miRNAs in M . An edge e ∈ E can be

represented as a 3-tuple e = (g1, g2, interaction). We augment the nodes and edges

of the original pathway as follows:

V̄ = V ∪ {m ∈M |T (m) ∩ V 6= ∅}

Ē = E ∪ {(m, g, inhibition)|m ∈ V ∩M ∧ g ∈ T (m)}

We implemented this algorithm in R and published it as the Bioconductor package

named mirIntegrator (http://bit.ly/mirIntegrator). mirIntegrator is flexible and
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allows users to integrate user-specific pathway databases with user-specific miRNA-

mRNA target databases. Additionally, it generates graphical representations of the

augmented pathways (see Fig. 6.3). We integrated pathways from Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) [74] (version 73) with miRNA targets from

miRTarBase [65] (version 4.5) to generate mirAP, a database of miRNA-augmented

pathways (htpp://www.cs.wayne.edu/dmd/mirAP).
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Chapter 4: Proposed miRNA augmented

pathways database

4.1 Databases needed for integration

The input to generate the augmented pathways includes a database of signal-

ing pathways and a database of miRNA target interactions. Here we describe the

databases that we used in our approach.

4.1.1 Database of signaling pathways: KEGG pathways

As described in previously we are using the Kyoto Encyclopedia of Genes

and Genomes (KEGG).We downloaded the KEGG pathways release 73.0+/01-03,

Jan 2015 (Kanehisa Laboratories). This dataset contains 149 KEGG human sig-

naling pathways. To process the original pathways in R, we parsed them into

a list of graphNEL objects using the ROntoTools package Version 1.2.0. The

users can obtain the list of KEGG human signaling pathways with the function

data(''kegg pathways''). This object contains a list of graphNEL objects where

each graph represents one KEGG signaling pathway. The name of each pathway is

its KEGG pathway identifier. A script that constructs the kegg pathways object may

be found in ‘inst/scripts/get kegg pathways.R’,

The names of the pathways are stored on a different object called names pathways.

This object contains a list of KEGG signaling pathways’ names. The names of the

pathways in human are obtained with the ROntoTools package. This object can be

loaded with the instruction data(''names pathways''). A script that constructs the

names pathways object may be found in ‘inst/scripts/get names pathways.R’, see the

example.
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4.1.2 Database of miRNA target interactions: mirTarBase

The second database needed to generate the miRNA augmented pathways is a

database of miRNA-target interactions. For this purpose we use mirTarBase [65]

which was downloaded from http://mirtarbase.mbc.nctu.edu.tw/ on 4/1/2015.

mirTarBase is a publicly available database of microRNA-target interactions in hu-

man. We downloaded mirTarBase release 4.5: Nov. 1, 2013, and made it accessible

in our package through the object mirTartBase. This object is a data.frame with

39083 interactions and nine variables. This dataset is licensed by its authors (Hsu et

al.), see http://mirtarbase.mbc.nctu.edu.tw/cache/download/LICENSE.

Even though our package includes mirTarBase, any data.frame with human

miRNA-targets interactions can be used to generate the miRNA augmented path-

ways. For this purpose, the data.frame should contain the following columns:

• miRNA: which contains the miRNA ID,

• Target.ID: contains the entrez ID of the gene targeted by the miRNA

A script which downloads the file and constructs the mirTarBase object may be

found in ‘inst/scripts/get mirTarBase.R’.

4.2 Data representation of the augmented pathways

The primary goal of our mirIntegrator package is to integrate microRNA expres-

sion into signaling pathways for pathway analysis. The first step of our pipeline is

to augment signaling pathways with miRNA target interactions. Figure 4.1 shows a

model of the expected output.

In our package, we include a list of signaling pathways augmented with miRNA

in the object augmented pathways. This object is a list of human signaling KEGG

pathways augmented with validated miRNA-target interactions from mirTarBase us-

ing our algorithm. These interactions represent the biological miRNA repression of
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Figure 4.1: Model of a miRNA-augmented pathway. Portion of the Colorectal Cancer
pathway from KEGG.

its target genes and are included in the model as negative links. The object can be ob-

tained with the instruction data(''augmented pathways''). augmented pathways

is a list of graphNEL objects where each graph is a pathway that was augmented with

miRNA-target interactions. The id of each pathway is its KEGG pathway identifier.

A script that constructs the augmented pathways object may be found in ‘in-

st/scripts/get augmented pathways.R’.

4.2.1 Using the augmented pathways: an example

We also include an example that illustrates how to use the augmented pathways.

Let us say that we are interested in finding the pathway with a fewer number of nodes

among the augmented pathways, i.e. the smallest pathway. This script is included

in the function smallest pathway. This simple function is an example of how to

navigate the genes on the list of augmented pathways. The parameter is a list of
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graph::graphNEL objects, let us call it pathways. The output is the index of the

pathway with a fewer number of nodes. The instruction to get the number of nodes

of the smallest pathway is length(smallest pathway(augmented pathways)).

4.3 Proposed graphical visualization of the pathways

mirIntegrator incorporates a functionality to produce a graphical represen-

tation of the final pathways. This functionality is useful when researchers need to

visualize the nodes that were added to the pathway. For instance, if they need to

see how the pathway of “Sulfur relay system” (path:hsa04122) has changed, they can

plot the augmented pathway using the function plot augmented pathway. Here an

example, Figure 4.2 is the output of these instructions:

data(names_pathways)

plot_augmented_pathway(kpg$"path:hsa04122",

augmented_pathways$"path:hsa04122",

names_pathways["path:hsa04122"] )

Another useful function is plot change which can be used to see how much the

order of the pathways has changed. To demonstrate this functionality, the mirIn-

tegrator package includes a copy of KEGG human signaling pathways. We ob-

tained these KEGG pathways using the KEGGgraph package. A complete script

describing how this dataset was obtained included in this package on ‘/inst/script-

s/get kegg pathways.R’. An example of the use of the function plot change .

data(augmented_pathways)

data(kegg_pathways)

data(names_pathways)

plot_change(kegg_pathways,augmented_pathways, names_pathways)
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Figure 4.2: Example of augmented pathway. This visualization of the miRNA-augmented
Sulfur Relay System pathway was generated using the function plot augmented pathway

on our package.

See the resulting graph on Figure 6.2.

This package also includes a function to generate a pdf file with the plots of the

list of augmented pathways. Here an example of this functionality:

data(augmented_pathways)

data(kegg_pathways)

data(names_pathways)

pathways2pdf(kegg_pathways[18:20],augmented_pathways[18:20],

names_pathways[18:20], "three_pathways.pdf")
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4.4 Script to augment signaling pathways with miRNA

The main functionality of the mirIntegrator package is the integration of miR-

NAs into signaling pathways. The input of this functionality are a set of signaling

pathways like KEGG pathways [74] or Reactome [26], and a miRNA-target interaction

database like mirTarBase [65] or TargetScan [89]. The output is a set of augmented

signaling pathways. Each augmented pathway contains the original sets of genes and

interactions plus the set of miRNAs involved in the pathways and their miRNA-target

interactions. These interactions are the biological miRNA repression to their target

genes and are represented in the model as negative interactions.

Here we show an example of the method functionality. Let us say that a researcher

needs to integrate the human signaling pathways from KEGG [74] with miRNA in-

teractions from miRTarBase [65]. The researcher must first obtain the list of path-

ways as a list of graph::graphNEL objects. The nodes of each pathway represent

the genes involved in the pathway, and the edges represent the biological interac-

tions among those genes (activation or repression). The second step is to obtain a

miRNA-target interactions dataset as a data.frame with the columns ‘‘miRNA’’ and

‘‘Target.Gene’’. Notice that the symbols used to identify the ‘‘Target.Gene’’

column on the miRNA-target interactions dataset must be the same symbols used on

the nodes of the pathways. i.e. If the genes are identified by entrezID on the path-

ways’ dataset, then the miRNA-targets dataset must identify the genes by entrezID

as well. Once the researchers have these two datasets, they can use the function

integrate mir.

To demonstrate this functionality, mirIntegrator package includes the object

mirTarBase which is a copy of the experimentally validated miRNA-target inter-

actions database miRTarBase [65]. We downloaded the miRTarBase database from

http://mirtarbase.mbc.nctu.edu.tw/ on November 11, 2016. A complete script

describing how this database was downloaded and formatted is included in this pack-



www.manaraa.com

43

age on ‘/inst/scripts/get mirTarBase.R’.

Here is an example of how researchers can generate the list of augmented path-

ways from five KEGG pathways and mirTarBase interactions using the function

integrate mir:

require("ROntoTools")

kpg <- keggPathwayGraphs("hsa")

kpg <- kpg[15:20] #delete this line for augmenting all pathways.

require("mirIntegrator")

data(mirTarBase)

augmented_pathways <- integrate_mir(kpg, mirTarBase)

head(augmented_pathways)

The result is a list of pathways where each pathway is a graph::graphNEL

object. When researchers need to see the details of a particular pathway, they

can do so by only using the KEGG pathway id of the pathway of interest. For

example, the pathway “path:hsa04122” can be reached with the following instruction:

augmented_pathways$"path:hsa04122"
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Chapter 5: Software Implementation

5.1 Software features

The software mirIntegrator is implemented using the R programming language. It

is publicly available on the Bioconductor website (http://www.bioconductor.org).

The package has three main functionalities: i) integration of miRNAs into signaling

pathways, ii) graphical representations, and iii) pathway analysis using the augmented

pathways and both mRNA and miRNA data. These functionalities are documented

in the software manual (at Bioconductor.org). We also developed a GUI version for

this software using the shiny framework [22]. The source code of the graphic user

interface is available at http://datad.github.io/mirIntegrator.

5.2 Pathway analysis in R and Bioconductor

The primary goal of bioinformatics is to contribute to advances in biology by

developing and distributing tools to handle the massive dataset and perform com-

plex analyses. Making these tools available for collaborative improvement is crucial.

Projects like Bioconductor, CRAN, Bioperl, and Biopython are repositories of open

source bioinformatics and statistical tools to foster collaborative development.

The Bioconductor [54] project aims to reduce the barriers for remote interdisci-

plinary research and facilitate the reproducibility of research results. Bioconductor

packages are primarily written in R although C++ and other programming languages

can be incorporated into the packages [39]. There are several well-implemented sta-

tistical and visualization tools in R that facilitate and speed the development of new

bioinformatic tools. Bioconductor has several advantages over other projects includ-

ing: supports object-oriented programming for R, promotes modularization at the

package level, web connectivity, statistical simulation, modeling, and visualization
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support, among others.

In addition to all these advantages, Bioconductor has a peer-review process for

publication. This process increases the quality of the packages, reduces duplicity,

promotes reusability of software and data structures, and improves the quality of

documentations, vignettes, and other manuals that are included in the packages.

We implemented our algorithm in R and published it as the Bioconductor package

named mirIntegrator (http://bit.ly/mirIntegrator). mirIntegrator is flexible and

allows users to integrate user-specific pathway databases with user-specific miRNA-

mRNA target databases. Additionally, it generates graphical representations of the

augmented pathways (see Fig. 6.3). We integrated pathways from Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) [74] (version 73) with miRNA targets from

miRTarBase [65] (version 4.5) to generate mirAP, a database of miRNA-augmented

pathways (htpp://www.cs.wayne.edu/dmd/mirAP). Figure 5.1 represents the graph-

ical augmentation of the colorectal cancer pathway in KEGG. Our package has three

main functionalities: i) integration of miRNAs into signaling pathways, ii) graphical

representations, and iii) pathway analysis using the augmented pathways and both

mRNA and miRNA data.

i. Integration of miRNAs into signaling pathways. By default, the package in-

cludes KEGG pathways (version 73) [74] and their augmented versions using vali-

dated targets from miRTarBase (version 4.5) [65]. However, the software also allows

users to download and augment pathways using other databases.

ii. Graphical representations. mirIntegrator is suitable to generate a number

of graphical representations. For example, Figure 4.2 shows the augmented Sulfur

relay system pathway. The nodes in green are the genes from the signaling pathways

and the nodes in black are the newly added miRNAs. mirIntegrator also generates

a visualization and statistics of the miRNAs added on each pathway. This chart

is particularly useful to analyze the overall impact that miRNA have in a set of
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Figure 5.1: Portion of the miRNA-augmented Colorectal Cancer pathway.
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pathways.

iii. Pathway analysis using augmented pathways. The final goal of the framework

is to integrate miRNA and mRNA expression for the purpose of pathway analysis.

Figure 5.2 shows a screenshot of the graphical user interface (GUI). First, users are

required to upload miRNA-mRNA sample-matched data. The datasets then can be

selected using the drop boxes. To perform the analysis, users simply click the button

Run Impact Analysis to computes the p-value for each pathway. These p-values are

then adjusted for multiple comparisons using False Discovery Rate (FDR) [10, 121].

5.3 Example of pathway analysis of miRNA and mRNA data

The main purpose of the pathways augmentation process is to analyze miRNA

and mRNA expressions at the same time. For this reason, we show here how to

analyze a multiple sclerosis datasets using the mirIntegrator package. Jernas et

al. [69] published the dataset that we analyzed. They collected heparin-anticoagulated

peripheral blood from 21 multiple sclerosis (MS) patients and nine healthy controls.

Ten of the 21 samples were used to profiled mRNA expression, and the 11 remaining

were used to profiled miRNA expression. These datasets are accessible at NCBI

GEO database [43], with accession GSE43592. We preprocessed the datasets using

the limma package [135]. For demonstration purposes, we included the preprocessed

datasets on this package.

data(GSE43592_miRNA)

data(GSE43592_mRNA)

Once researchers have the data and the augmented pathways, they can run the

pathway analysis method that they prefer. We suggest using ROntoTools pack-

age [150] because it takes into account the topology of the pathways (the method

implemented on ROntoTools is explained on [149]). We show here how to perform
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Figure 5.2: A screenshot of the mirIntegrator’s graphical user interface (GUI). Users first
upload their sample-matched mRNA and miRNA datasets. They can choose the datasets
from the drop boxes. To perform data analysis, users just press the button Run Impact
Analysis. The output of the software is a list of augmented pathways ranked according
to the joint probability of having both the observed level of enrichment as well as the
observed level of perturbation just by chance. This probability is corrected for multiple
comparisons with the false discovery rate adjustment (pComb.fdr). Other statistics, such as
p-values for the observed perturbation (pPert), raw p-value for the combined enrichment and
perturbation (pComb), and the FDR-corrected p-value for perturbation alone (pPert.fdr),
are also reported.
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impact pathway analysis for the augmented pathways:

data(GSE43592_mRNA)

data(GSE43592_miRNA)

data(augmented_pathways)

data(names_pathways)

lfoldChangeMRNA <- GSE43592_mRNA$logFC

names(lfoldChangeMRNA) <- GSE43592_mRNA$entrez

lfoldChangeMiRNA <- GSE43592_miRNA$logFC

names(lfoldChangeMiRNA) <- GSE43592_miRNA$entrez

keggGenes <- unique(unlist( lapply(augmented_pathways,nodes) ) )

interGMi <- intersect(keggGenes, GSE43592_miRNA$entrez)

interGM <- intersect(keggGenes, GSE43592_mRNA$entrez)

peRes <- pe(x= c(lfoldChangeMRNA, lfoldChangeMiRNA ),

graphs=augmented_pathways, nboot = 200, verbose = FALSE)

message(paste("There are ", length(unique(GSE43592_miRNA$entrez)),

"miRNAs meassured and",length(interGMi),

"of them were included in the analysis."))

message(paste("There are ", length(unique(GSE43592_mRNA$entrez)),

"mRNAs meassured and", length(interGM),

"of them were included in the analysis."))

summ <- Summary(peRes)

rankL <- data.frame(summ,path.id = row.names(summ))

tableKnames <- data.frame(path.id = names(names_pathways),names_pathways)

rankL <- merge(tableKnames, rankL, by.x = "path.id", by.y = "path.id")

head(rankL)
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Chapter 6: Method Validation

6.1 Validation outline

In this section, we present a detailed quantification of the augmented pathways and

the results of our pathway analysis pipeline using the miRNA-augmented pathways

(mirAP). For this purpose, we downloaded and augmented signaling pathways with

miRNA-gene interaction from KEGG [74] and mirTarBase[65], respectively. To vali-

date our pathway analysis pipeline, we perform pathway analysis of 9 mRNA/miRNA

sample-matched datasets using two different methods (Impact Analysis and ORA)

and show that mirAP offers a significant improvement over analyzing mRNA data

alone. We also compare the obtained results with the state-of-the-art method (mi-

croGraphite) [19].

6.2 Descriptive statistics of the augmented pathways

We augmented the KEGG pathways to analyze the change in pathways size after

introducing miRNAs. Figure 6.2 shows some statistics about the number of nodes of

each pathway before and after augmentation. We sort the pathways in an increasing

order of the number of genes in the original pathways for a clear visualization. The

red line shows the size (number of genes) of the original pathways. The average

number of genes in a KEGG pathway is 102. The blue line indicates the number

of miRNAs added to each pathway. On average, each pathway is augmented with

134 miRNAs. The green line shows the total number of both mRNA and miRNA

for each pathway after augmentation. On average, an augmented pathway has 234

entities (genes and miRNAs). In essence, the size of each pathway is approximately

doubled after augmentation. These results show that pathways are heavily regulated

by miRNAs and confirm the crucial role of miRNAs, as well as the importance of
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Figure 6.1: Evaluation scheme.

Figure 6.2: Comparison of pathway sizes before and after augmentation. The pathways
were sorted by KEGG pathway size. The red line shows the size (number of genes) of
the original pathways. The blue line shows the number of miRNAs added each pathway.
The green line shows the total number of both mRNA and miRNA for each pathway after
augmentation. On average, the size of each pathway is doubled after augmentation. Plot
generated using the function plot change.
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Table 6.1: Description of the analyzed datasets

Ref. GEO ID Pubmed Disease/Target pathway KEGGID
[76] GSE26168 21829658 Type II diabetes hsa04930
[95] GSE62699 26381263 Alcoholism hsa05034
[118] GSE35834 23987127 Colorectal cancer hsa05210
[114] GSE43797 24072181 Pancreatic cancer hsa05212
[94] GSE29250 22046296 Non-small cell lung cancer hsa05223
[36] GSE32688 22261810 Pancreatic cancer hsa05212
[69] GSE43592 23895517 Amyotrophic lateral sclerosis hsa05014
[155] GSE35389 23056502 Melanoma hsa05218
[51] GSE35982 22703586 Colorectal cancer hsa05210

being able to analyze miRNA and mRNA data together. Although the framework

was demonstrated on KEGG pathways, it can exploit information available in other

databases, such as functional modules available in Gene Ontology database [23] or

protein-protein interactions available in the STRING database [151].

6.3 Results

We analyzed nine sample-matched datasets from seven different diseases:

GSE43592 (multiple sclerosis, 10 controls, 10 cases), GSE35389 (melanoma, 4 con-

trols, 4 cases), GSE35982 (colorectal cancer, 8 controls, 8 cases), GSE26168 (type II

diabetes, 8 controls, 9 cases), GSE62699 (alcoholism, 18 controls, 18 cases), GSE35834

(colorectal cancer, 23 controls, 55 cases), GSE43797 (pancreatic cancer, 5 controls,

7 cases), GSE29250 (non-small cell lung cancer, 6 controls, 6 cases), and GSE32688

(pancreatic cancer, 7 controls, 25 cases). For each of these datasets, we used the nor-

malized expression values as found in GEO [7]. The microarray probes were annotated

according to their platform’s metadata using GEOquery [29]. Next, we estimated log-

fold-change between disease and control groups by fitting to a gene-wise linear model

using the limma package [122]. We only took into consideration mRNA and miRNA

with adjusted p-values lower that 5%. Among these significant mRNAs and miRNAs,

we chose the ones that have the highest fold-change as differentially expressed, up to
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10% of measured mRNAs and miRNAs.

The nine datasets were selected due to two important reasons. First, these datasets

have both mRNA and miRNA measurements for the same set of patients. Second, for

each of the underlying diseases, there is a KEGG pathway, henceforth target pathway,

that was created to describe the underlying mechanisms of the disease. To demon-

strate the advantage of the miRNA data integration, we compared the use of the

original KEGG pathways with the use of our miRNA augmented pathways (mirAP).

We performed two pathway analysis methods that use p-value and fold-change for

each set of pathways: impact analysis (IA) [41, 140] and over-representation analysis

(ORA) [40]. The input for IA and ORA using KEGG is mRNA expression data. The

input for IA and ORA using mirAP includes both mRNA and miRNA expression

data. The output of each method is a list of p-values (one per each pathway). These

p-values are adjusted for multiple comparisons using the false discovery rate approach

(FDR) [10].

We also analyze the nine GEO datasets using microGraphite [19] after quantile

normalization [16] to compare with our pipeline. The primary goal of microGraphite

is the identification of signal transduction paths correlated with the condition under

study. It is implemented in a four-steps recursive procedure as follows: (i) selecting

pathways, (ii) best path identification, (iii) meta-pathway construction, and (iv) meta-

pathway analysis. Here we only consider the first step of the approach, which is the

selection of significant pathways. This selection is based on the significance levels

obtained from the test on the mean of the pathways (alpha-mean). The input is the

mRNA and miRNA expression data, and it does not take in account fold-changes nor

differentially expressed entities.

For each dataset, we expect a good method to identify the target pathway as

significant, as well as to rank it on top. For instance, in the colorectal cancer dataset

which compares colorectal cancer tissue vs. normal, the Colorectal cancer pathway
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Figure 6.3: Portion of the miRNA-augmented Amyotrophic Lateral Sclerosis pathway.
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Table 6.2: Results of target pathway identification using ORA (column 3), IA (col. 4),
ORA on mirAP (col. 5), IA on mirAP (col. 6), microGraphite (col. 7)

GEO ID Target pathway ORA IA ORAmir IAmir microG.
GSE26168 Type II diabetes mellitus no no no no yes
GSE29250 Non-small cell lung canc. no no yes no no
GSE35982 Colorectal cancer no no no no no
GSE32688 Pancreatic cancer no no yes yes no
GSE35389 Melanoma no no yes yes no
GSE35834 Colorectal cancer no no yes yes no
GSE43592 Amyotrophic lateral scle. no no no yes no
GSE43797 Pancreatic cancer no no yes yes yes
GSE62699 Alcoholism no no no yes no

must be shown as significant and should be as close to the top of the ranking as

possible since this is the pathway that describes the phenomena involved in colorectal

cancer. Based on this evaluation, we compared the rank and p-value of the target

pathway in each disease for five methods:

i) mRNA expression alone using standard KEGG pathways with ORA

ii) mRNA expression alone using standard KEGG pathways with IA

iii) mRNA and miRNA expression data using the augmented pathways (mirAP)

with ORA

iv) mRNA and miRNA expression data using mirAP with IA

v) mRNA and miRNA expression data analyzed with microGraphite.

Table 6.2 shows the target pathways and their significance for the nine datasets.

The first and second columns display the datasets and their corresponding target path-

ways while the other five columns indicate whether the target pathways are identified

as significant using the five methods: ORA of mRNA expression on KEGG pathways

(ORA+KEGG), IA of mRNA expression on KEGG (IA+KEGG), ORA of miRNA

and mRNA expression data on mirRNA-augmented pathways (ORA+mirAP), our
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approach IA of miRNA and mRNA expression on mirAP (IA+mirAP), and miRNA

and mRNA expression analysis using microGraphite, respectively. The significance

threshold is 5% for FDR p-values. IA and ORA fail to identify any target pathway

as significant when using just mRNA whereas our approach (IA+mirAP) correctly

identify the target pathway in 6 out of 9 datasets (GSE32688, GSE35389, GSE35834,

GSE43592, GSE43797, GSE62699). ORA on mirAP correctly identify the target

pathway as significant in 5 out of 9 datasets (GSE29250, GSE32688, GSE35389,

GSE35834, GSE43797). microGraphite correctly identifies the target pathway as sig-

nificant in only 2 out of 9 datasets (GSE26168, GSE43797). The results demonstrate

that our integration of mRNA and miRNA lifts the statistical power for both pathway

analysis techniques (ORA and IA) and outperforms microGraphite in target pathway

identification.

Figure 6.4 shows the p-values and rankings of the target pathways using the five

methods. The panel (a) shows the FDR corrected p-values of the target pathways. We

compare the lists of p-values using t-test and Wilcoxon test. The adjusted p-values

produced by IA+mirAP are significantly smaller than those of IA+KEGG (p=0.002

using t-test and p=0.007 using Wilcoxon test), ORA+KEGG (p=0.001 using the

t-test, and p=0.005 using Wilcoxon test), and microGraphite (p=0.006 using t-test

and p=0.009 using Wilcoxon test).

The panel (b) shows the rankings of the target pathways. Again, the rankings pro-

duced by IA+mirAP are significantly smaller than those of IA+KEGG (p=0.03 using

the t-test, and p=0.04 using Wilcoxon test), ORA+KEGG (p=0.03 using t-test and

p=0.04 using Wilcoxon test), and microGraphite (p=0.0051 using t-test and p=0.0058

using Wilcoxon test). This result confirms that our augmented pathways, mirAP, im-

prove the performance of traditional Impact Analysis and ORA. Also, the results

show that the proposed integrative pathway analysis also outperforms microGraphite

in both p-values and rankings for target pathway identification. Furthermore, our
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Figure 6.4: Corrected p-values and rankings of the target pathways using different meth-
ods.
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pathway database (mirAP) is generated with validated miRNA-mRNA interactions,

while microGraphite uses predicted interactions which increase the number of false

positive miRNA-target interactions. Another drawback of microGraphite is its ex-

ecution time. A typical analysis with microGraphite takes approximately 22 hours

while our approach takes only a few minutes. We ran these experiments on a standard

desktop workstation with a 2.6 GHz Intel Core i5, 8GB of RAM, on a single thread,

and the OS X 10.11 operative system.
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Chapter 7: Reference Manual

The reference manual presented here is also available at Bioconductor (https:

//bioconductor.org/packages/release/bioc/html/mirIntegrator.html).

Package mirIntegrator

Version 1.4.0

Date 2016-07-02

Type Package

Title Integrating microRNA expression into signaling pathways for pathway analysis

Author Diana Diaz (dmd at wayne dot edu)

Maintainer Diana Diaz (dmd at wayne dot edu)

Depends R (>= 3.3)

Imports graph,ROntoTools, ggplot2, org.Hs.eg.db, AnnotationDbi, Rgraphviz

Suggests RUnit, BiocGenerics

Description Tools for augmenting signaling pathways to perform pathway analysis

of microRNA and mRNA expression levels.

License GPL (>=3)

URL http://datad.github.io/mirIntegrator/

biocViews Network, Microarray, GraphAndNetwork, Pathways, KEGG

NeedsCompilation no

augmented pathways

Signaling pathways augmented with miRNA.
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Description

Human signaling KEGG pathways augmented with validated miRNA-target in-

teractions from mirTarBase using the mirIntegrator package. These interactions

represent the biological miRNA repression of its target genes and are included in

the model as negative links.

Usage

data("augmented_pathways")

Value

A list of graphNEL objects where each graph is a pathway that was augmented

with miRNA-target interactions. The name of each pathway is its KEGG pathway

identifier.

Source

Generated using the mirIntegrator package. A script that con-

structs the augmented pathways object may be found in ‘inst/script-

s/get augmented pathways.R’, see the example.

References

M. Kanehisa and S. Goto, KEGG: Kyoto Encyclopedia of Genes and Genomes,

Nucleic Acids Research, vol. 28, pp. 27-30, January 2000.

S.-D. Hsu, Y.-T. Tseng, S. Shrestha, Y.-L. Lin, A. Khaleel, C.-H. Chou, C.-F.

Chu, H.-Y. Huang, C.-M. Lin, S.-Y. Ho, T.-Y. Jian, F.-M. Lin, T.-H. Chang,

S.-L. Weng, K.-W. Liao, I.-E. Liao, C.-C. Liu, and H.-D. Huang, miRTarBase

update 2014: an information resource for experimentally validated miRNA-target

interactions, Nucleic Acids Research, vol. 42, pp. D78 - D85, Jan. 2014.
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See Also

mirTarBase and kegg pathways

Examples

data(augmented_pathways)

head(augmented_pathways)

script <- system.file("scripts", "get_augmented_pathways.R",

package = "mirIntegrator")

script

readLines(script)

GSE43592 miRNA Top table of preprocessed miRNA of GSE43592 dataset.

Description

A data.frame with the Log fold change and p-value of preprocessed miRNA ex-

pression of GSE43592 dataset.

Usage

data(GSE43592_miRNA)

Value

A data frame with 881 miRNAs with the following 8 variables: entre, ID, logFC,

AveExpr, t, P.Value, adj.P.Val, B.
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Source

Raw data obtained from http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE43592 and preprocessed with the limma package version 3.24.0.

References

M. Jernas, C. Malmestrom, M. Axelsson, I. Nookaew, H. Wadenvik, J. Lycke, and

B. Olsson,MicroRNA regulate immune pathways in t-cells in multiple sclerosis

(MS), BMC immunology, vol. 14, p. 32, 2013.

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK (2015).

limma powers differential expression analyses for RNA-sequencing and microarray

studies. Nucleic Acids Research, 43(7), pp. e47.

Examples

data(GSE43592_miRNA)

head(GSE43592_miRNA)

GSE43592 mRNA Top table of preprocessed mRNA of GSE43592 dataset.

Description

A data.frame with the Log fold change and p-value of preprocessed mRNA ex-

pression of GSE43592 dataset.

Usage

data(GSE43592_mRNA)
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Value

A data frame with 19611 mRNAs with the following 8 variables: entre, ID, logFC,

AveExpr, t, P.Value, adj.P.Val, B.

Source

Raw data obtained from http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE43592 and preprocessed with the limma package version 3.24.0.

References

M. Jernas, C. Malmestrom, M. Axelsson, I. Nookaew, H. Wadenvik, J. Lycke, and

B. Olsson,MicroRNA regulate immune pathways in t-cells in multiple sclerosis

(MS), BMC immunology, vol. 14, p. 32, 2013.

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK (2015).

limma powers differential expression analyses for RNA-sequencing and microarray

studies. Nucleic Acids Research, 43(7), pp. e47.

Examples

data(GSE43592_mRNA)

head(GSE43592_mRNA)

integrate mir Produce augmented pathways

Description

This function takes each pathway of the input list of signaling pathways and adds

the miRNAs that are related to it.
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Usage

integrate_mir(original_pathways, targets_db)

Arguments

original pathways

A list of graph::graphNEL objects where each of the nodes is

named with ‘<gene ID>’ . Gene IDs used to identify the nodes

must be the same gene IDs used to identify the genes on the

miRNA-target interactions data.frame, targets db. i.e. If the

genes are identified by Entrez ID on the original pathways

graph::graphNEL list, then the targets db data.frame must

identify the genes by Entrez ID as well. Nodes of each

graph::graphNEL represent the genes involved in the pathway and

edges represent the biological interactions (activation or repres-

sion) among those genes (activation or repression).

targets db A data.frame with columns: ‘miRNA’ which names the miRNAs

and ‘Target.ID’ which gives the gene ID of the target gene. The

Gene IDs used to identify the “Target.ID” column must be the

same gene IDs used on the nodes of the original pathways. i.e.

If the genes are identified by Entrez ID on the original pathways

graph::graphNEL list, then the targets db data.frame must iden-

tify the genes by Entrez ID as well.

Value

Gene signaling pathways augmented with miRNA interactions. The augmented

pathways are contained in a list of graph::graphNEL objects where each of the

nodes is named with ‘<gene ID>’. Nodes of each graph::graphNEL represent
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genes and miRNAs involved in the pathway and edges represent the biological

interactions (activation or repression) among them.

Author(s)

Diana Diaz

Examples

data(kegg_pathways)

data(mirTarBase)

kegg_pathways <- kegg_pathways[1:5] #delete this for augmenting all pathways.

augmented_pathways <- integrate_mir(kegg_pathways, mirTarBase)

kegg pathways List of KEGG signaling pathways of human.

Description

This dataset contains 149 KEGG human signaling pathways. The original path-

ways were parsed to a list of graphNEL objects using the ROntoTools package.

The original KEGG pathways were published by Kanehisa Laboratories, release

73.0+/01-03, Jan 2015.

Usage

data("kegg_pathways")

Value

A list of graphNEL objects where each graph represents one KEGG signaling

pathway. The name of each pathway is its KEGG pathway identifier.
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Source

Obtained using the ROntoTools package Version 1.2.0 with KEGG database re-

lease 73.0+/01-03, Jan 2015. A script that constructs the kegg pathways object

may be found in ‘inst/scripts/get kegg pathways.R’, see the example.

References

M. Kanehisa and S. Goto, KEGG: Kyoto Encyclopedia of Genes and Genomes,

Nucleic Acids Research, vol. 28, pp. 27-30, January 2000.

C. Voichita, M. Donato, and S. Draghici, Incorporating gene significance in the

impact analysis of signaling pathways, in 2012 11th International Conference on

Machine Learning and Applications (ICMLA), vol. 1, pp. 126-131, Dec. 2012.

Examples

data(kegg_pathways)

head(kegg_pathways)

script <- system.file("scripts", "get_kegg_pathways.R",

package = "mirIntegrator")

script

readLines(script)

mirTarBase MicroRNA-target interactions in human.

Description

Dataset of miRNA-target interactions in human obtained from mirTarBase release

4.5: Nov. 1, 2013.
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Usage

data(mirTarBase)

Format

A data.frame with 39083 interactions and 9 variables. The columns needed for

this package are:

• miRNA: which contains the miRNA ID,

• Target.ID: contains the entrez ID of the gene targeted by the miRNA

Details

This dataset is licensed by its authors (Hsu et al.), see http://mirtarbase.mbc.

nctu.edu.tw/cache/download/LICENSE.

Value

A data.frame with human miRNA-targets interactions

Source

Downloaded from http://mirtarbase.mbc.nctu.edu.tw/ on 4/1/2015. A script

which downloads the file and constructs the mirTarBase object may be found in

‘inst/scripts/get mirTarBase.R’, see the example.

References

S.-D. Hsu, Y.-T. Tseng, S. Shrestha, Y.-L. Lin, A. Khaleel, C.-H. Chou, C.-F.

Chu, H.-Y. Huang, C.-M. Lin, S.-Y. Ho, T.-Y. Jian, F.-M. Lin, T.-H. Chang,

S.-L. Weng, K.-W. Liao, I.-E. Liao, C.-C. Liu, and H.-D. Huang, miRTarBase
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update 2014: an information resource for experimentally validated miRNA-target

interactions, Nucleic Acids Research, vol. 42, pp. D78 - D85, Jan. 2014.

Examples

data(mirTarBase)

head(mirTarBase)

script <- system.file("scripts", "get_mirTarBase.R",

package = "mirIntegrator")

script

readLines(script)

names pathways List of KEGG signaling pathways’ names.

Description

Names of the KEGG signaling pathways in human obtained with the ROntoTools

package. The original KEGG pathways were published by Kanehisa Laboratories,

release 73.0+/01-03, Jan 2015.

Usage

data("names_pathways")

Value

A list of KEGG signaling pathways’ names.
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Source

Obtained using the ROntoTools package Version 1.2.0 with KEGG database re-

lease 73.0+/01-03, Jan 2015. A script that constructs the names pathways object

may be found in ‘inst/scripts/get names pathways.R’, see the example.

References

M. Kanehisa and S. Goto, KEGG: Kyoto Encyclopedia of Genes and Genomes,

Nucleic Acids Research, vol. 28, pp. 27-30, January 2000.

C. Voichita, M. Donato, and S. Draghici, Incorporating gene significance in the

impact analysis of signaling pathways, in 2012 11th International Conference on

Machine Learning and Applications (ICMLA), vol. 1, pp. 126-131, Dec. 2012.

Examples

data(names_pathways)

head(names_pathways)

script <- system.file("scripts", "get_names_pathways.R",

package = "mirIntegrator")

script

readLines(script)

pathways2pdf Export augmented pathways to pdf

Description

This function creates a pdf file with plottings of a list of augmented pathways.
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Usage

pathways2pdf(original_pathways, augmented_pathways, pathway_names, file)

Arguments

original pathways

A list of graph::graphNEL objects where each of the nodes is

named with ‘<gene ID>’. Nodes of each graph::graphNEL rep-

resent the genes involved in the pathway and edges represent the

biological interactions (activation or repression) among those genes

(activation or repression).

augmented pathways

A list of graph::graphNEL objects where each of the nodes is

named with ‘<gene ID>’. Nodes of each graph::graphNEL rep-

resent genes and miRNAs involved in the pathway and edges rep-

resent the biological interactions (activation or repression) among

them.
pathway names

A list of names of the pathways identified by ‘<pathway ID>’.

file The name of the file where the plots will be saved.

Value

A pdf file with the plottings of the augmented pathways.

Author(s)

Diana Diaz

Examples

data(augmented_pathways)
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data(kegg_pathways)

data(names_pathways)

#The following instruction writes a pfd with three pathways

pathways2pdf(kegg_pathways[18:20],augmented_pathways[18:20],

names_pathways[18:20], "three_pathways.pdf")

#The following instruction writes a pfd with all the pathways:

#NOTE: It may take time.

# pathways2pdf(kegg_pathways,augmented_pathways,

# names_pathways, "all_pathways.pdf")

plot augmented pathway

Plotting of augmented pathway

Description

Functions for plotting a particular augmented pathway. In the plot, miRNAs that

were added to the original pathway are differentiated from proteins that were

originally in the pathway. Blue boxes represent the proteins that were part of the

original pathway, and black boxes represent the miRNAs that were added during

augmentation.

Usage

plot_augmented_pathway(original_pathway, augmented_pathway,

pathway_name = " ", ...)
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Arguments

original pathway

A graph::graphNEL object where each of the nodes is named with

‘<gene ID>’. Nodes of each graph::graphNEL represent the genes

involved in the pathway and edges represent the biological inter-

actions (activation or repression) among those genes.

augmented pathway

A graph::graphNEL object where each of the nodes is named with

‘<gene ID>’. Nodes of each graph::graphNEL represent genes

aand miRNAs involved in the pathway and edges represent the

biological interactions (activation or repression) among them.

pathway name

The name of the pathway.

... Other arguments for the ‘<plotPathway2Colors>’ function.

Value

A plot of one augmented pathway with the new nodes highlighted in black.

Author(s)

Diana Diaz

Examples

data(augmented_pathways)

data(kegg_pathways)

data(names_pathways)

plot_augmented_pathway(kegg_pathways[[18]], augmented_pathways[[18]],

pathway_name = names_pathways[[18]])
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plot change Plotting the change in pathways order

Description

Function for plotting a lines plot of the difference in pathways’ order. The resul-

tant plot shows the comparison between the order of the original pathways and

the order of the augmented pathways. It also contains a line with the order dif-

ference (order of the augmented pathways minus order of the original pathways).

The order of a biological pathway is the number of genes that are involved in it.

Usage

plot_change(original_pathways, augmented_pathways, pathway_names, ...)

Arguments

original pathways

A list of graph::graphNEL objects where each of the nodes is

named with ‘<gene ID>’. Nodes of each graph::graphNEL rep-

resent the genes involved in the pathway and edges represent the

biological interactions (activation or repression) among those genes

(activation or repression).

augmented pathways

A list of graph::graphNEL objects where each of the nodes is

named with ‘<gene ID>’. Nodes of each graph::graphNEL rep-

resent genes and miRNAs involved in the pathway and edges rep-

resent the biological interactions (activation or repression) among

them.
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pathway names

A list of names of the pathways identified by ‘<pathway ID>’.

... Other arguments for the ‘<plotLines>’ function.

Value

A lines plot of the comparison of pathways order.

Author(s)

Diana Diaz

Examples

data(augmented_pathways)

data(kegg_pathways)

data(names_pathways)

plot_change(kegg_pathways,augmented_pathways, names_pathways)

smallest pathway Get the smallest pathway

Description

Find the pathway with the fewer number of nodes among a list of pathways. This

simple function is an example of how to navigate the genes on a list of pathways.

Usage

smallest_pathway(pathways)
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Arguments

pathways A list of graph::graphNEL objects.

Value

The index of the pathway with fewer number of nodes.

Author(s)

Diana Diaz

Examples

data(augmented_pathways)

smallest_pathway(augmented_pathways)

smallest_pathway



www.manaraa.com

76

Chapter 8: Discussion and Conclusion

In this thesis, we present the background for integrating multiple types of data

for the purpose of pathway analysis and propose a method to augment signaling

pathways with miRNA-target interactions. We also show that miRNA-augmented

pathways (mirAP) offer a more comprehensive view and a deeper understanding of

complex diseases. Our contributions include a pipeline that use mirAP to integrate

miRNA and mRNA expression data for the purpose of pathway analysis, a publicly

available database of miRNA-augmented pathways, and an open source Bioconductor

package (mirIntegrator).

We describe methods for integrating multiple types of data for the purpose of

pathway analysis. We classified these methods into two broad categories: topol-

ogy based and non-topology based approaches. Topology-based methods take into

consideration the topology and interactions between genes while non-topology based

approaches treat a pathway as a set of genes or entities. When integrating multi-omics

data, the existing pathways (designed for gene expression) are expanded to include

other data types. Integrative pathway analysis methods extend the current graphs by

adding new nodes, relations, and interactions. The added nodes and links represent

the new data types. Then, the integrated model can be analyzed using the classical

pathway analysis methods. The input for integrative pathway analysis includes the

expanded pathways and multi-omics data. However, one major drawback of the ex-

isting integrative pathway analysis methods is that they are slow due to the intensive

computation required by the graphical models. Graphical models were initially de-

signed for graphs with less than a hundred nodes. However, the number of entities

in biological data can include thousands of genes or molecules. Additionally, existing

approaches combine expression values that are measured on different technologies or

platforms. Combining expression values requires cross-platform normalization which
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increases the statistical error. To fill this gap, we integrate the data using p-values of

differentially expressed entities instead of expression values. The combination of p-

values provides a significant advantage as p-values and do not require cross-platform

normalization.

As miRNA expression data are becoming freely accessible, miRNA-mRNA in-

tegrative analyses are likely to become a routine. Our pathway analysis pipeline

augments gene-gene signaling pathways with miRNA-target interactions. Then we

perform a topology-based pathway analysis taking into consideration both types of

molecular data. To demonstrate the power of the integrative analysis, we compared

our approach (mirIntegrator) with the state of the art method, microGraphite, us-

ing nine sample-matched datasets that were assayed in independent labs. While

microGraphite failed to identify target pathways as significant for 7 out of 9, our

approach correctly identified the target pathway as significant in 6 out of 9 datasets.

Also, mirIntegrator produced significantly smaller p-values and rankings of the target

pathways. In summary, our pipeline outperforms the state of the art method for

identifying target pathways (smaller p-values and rankings of the target pathways).
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Comparison of Normalization Methods for High Density Oligonucleotide Array

Data Based on variance and bias. Bioinformatics 19, 2 (January 2003), 185–193.

[17] Brazma, A., Parkinson, H., Sarkans, U., Shojatalab, M., Vilo, J.,

Abeygunawardena, N., Holloway, E., Kapushesky, M., Kemmeren,

P., Lara, G. G., Oezcimen, A., Rocca-Serra, P., and Sansone, S.-A.

ArrayExpress–a public repository for microarray gene expression data at the

EBI. Nucleic Acids Research 31, 1 (2003), 68–71.

[18] Breslin, T., Eden, P., and Krogh, M. Comparing functional annotation

analyses with Catmap. BMC Bioinformatics 5, 1 (2004), 193.

[19] Calura, E., Martini, P., Sales, G., Beltrame, L., Chiorino, G.,

D’Incalci, M., Marchini, S., and Romualdi, C. Wiring miRNAs to

pathways: a topological approach to integrate miRNA and mRNA expression

profiles. Nucleic Acids Research 42, 11 (2014), e96.

[20] Camon, E., Magrane, M., Barrell, D., Lee, V., Dimmer, E., Maslen,

J., Binns, D., Harte, N., Lopez, R., and Apweiler, R. The gene

ontology annotation (goa) database: sharing knowledge in uniprot with gene

ontology. Nucleic Acids Research 32, suppl 1 (2004), D262–D266.

[21] Chalise, P., Koestler, D. C., Bimali, M., Yu, Q., and Fridley, B. L.

Integrative clustering methods for high-dimensional molecular data. Transla-

tional cancer research 3, 3 (June 2014), 202–216.

[22] Chang, W., Cheng, J., Allaire, J., Xie, Y., and McPherson, J. shiny:

Web Application Framework for R, 2016. R package version 0.13.2.

[23] Consortium, G. O., et al. The Gene Ontology (GO) database and infor-

matics resource. Nucleic Acids Research 32, suppl 1 (2004), D258–D261.



www.manaraa.com

81

[24] Cox, D. R. Regression Models and Life-Tables. Journal of the Royal Statistical

Society. Series B (Methodological) 34, 2 (1972), 187–220.

[25] Creighton, C. J., Nagaraja, A. K., Hanash, S. M., Matzuk, M. M.,

and Gunaratne, P. H. A bioinformatics tool for linking gene expression

profiling results with public databases of microRNA target predictions. RNA

14, 11 (Nov. 2008), 2290–2296.

[26] Croft, D., Mundo, A. F., Haw, R., Milacic, M., Weiser, J., Wu,

G., Caudy, M., Garapati, P., Gillespie, M., Kamdar, M. R., Jassal,

B., Jupe, S., Matthews, L., May, B., Palatnik, S., Rothfels, K.,

Shamovsky, V., Song, H., Williams, M., Birney, E., Hermjakob, H.,

Stein, L., and D’Eustachio, P. The Reactome pathway knowledgebase.

Nucleic Acids Research 42, D1 (2014), D472–D477.

[27] Curtis, C., Shah, S. P., Chin, S.-F., Turashvili, G., Rueda, O. M.,

Dunning, M. J., Speed, D., Lynch, A. G., Samarajiwa, S., Yuan, Y.,

et al. The genomic and transcriptomic architecture of 2,000 breast tumours

reveals novel subgroups. Nature 486, 7403 (2012), 346–352.

[28] Das, J., Podder, S., and Ghosh, T. C. Insights into the miRNA regula-

tions in human disease genes. BMC Genomics 15 (2014), 1010.

[29] Davis, S., and Meltzer, P. S. GEOquery: a bridge between the Gene

Expression Omnibus (GEO) and BioConductor. Bioinformatics 23, 14 (2007),

1846–1847.

[30] De Keersmaecker, S. C. J., Thijs, I. M. V., Vanderleyden, J., and

Marchal, K. Integration of omics data: how well does it work for bacteria?

Molecular Microbiology 62, 5 (Dec. 2006), 1239–1250.



www.manaraa.com

82

[31] Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum-likelihood

from incomplete data via the EM algorithm. Journal of the Royal Statistical

Society. Series B. 39 (1977), 1–39.

[32] Diaz, D., Donato, M., Nguyen, T., and Draghici, S. Microrna-

augmented pathways (mirAP) and their applications to pathway analysis and

disease subtyping. In Pacific Symposium on Biocomputing. Pacific Symposium

on Biocomputing (2016), vol. 22, p. 390.

[33] Diaz, D., and Draghici, S. mirIntegrator: Integrating miRNAs into signal-

ing pathways, 2015.

[34] Diaz, D., Nguyen, T., and Draghici, S. A systems biology approach for

unsupervised clustering of high-dimensional data. In The Second International

Workshop on Machine Learning, Optimization and Big Data (2016).

[35] Dinu, I., Potter, J. D., Mueller, T., Liu, Q., Adewale, A. J.,

Jhangri, G. S., Einecke, G., Famulski, K. S., Halloran, P., and

Yasui, Y. Improving gene set analysis of microarray data by SAM-GS. BMC

Bioinformatics 8, 1 (2007), 242.

[36] Donahue, T. R., Tran, L. M., Hill, R., Li, Y., Kovochich, A.,

Calvopina, J. H., Patel, S. G., Wu, N., Hindoyan, A., Farrell, J. J.,

et al. Integrative survival-based molecular profiling of human pancreatic can-

cer. Clinical Cancer Research 18, 5 (2012), 1352–1363.

[37] Doniger, S. W., Salomonis, N., Dahlquist, K. D., Vranizan, K.,

Lawlor, S. C., and Conklin, B. R. MAPPFinder: using Gene Ontology

and GenMAPP to create a global gene expression profile from microarray data.

Genome biology 4, 1 (2003), R7.



www.manaraa.com

83
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[117] Pećina-Šlaus, N., and Pećina, M. Only one health, and so many omics.

Cancer Cell International 15, 1 (June 2015), 64.

[118] Pizzini, S., Bisognin, A., Mandruzzato, S., Biasiolo, M., Facciolli,

A., Perilli, L., Rossi, E., Esposito, G., Rugge, M., Pilati, P., et al.

Impact of microRNAs on regulatory networks and pathways in human colorectal

carcinogenesis and development of metastasis. BMC Genomics 14, 1 (2013),

589.

[119] Quitadamo, A., Tian, L., Hall, B., and Shi, X. An integrated network

of microRNA and gene expression in ovarian cancer. BMC Bioinformatics 16,

Suppl 5 (Mar. 2015), S5.

[120] Rahnenführer, J., Domingues, F. S., Maydt, J., and Lengauer, T.

Calculating the Statistical Significance of Changes in Pathway Activity From

Gene Expression Data. Statistical Applications in Genetics and Molecular Bi-

ology 3, 1 (2004).



www.manaraa.com

94

[121] Reiner, A., Yekutieli, D., and Benjamini, Y. Identifying differentially

expressed genes using false discovery rate controlling procedures. Bioinformatics

19, 3 (2003), 368–375.

[122] Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W.,

and Smyth, G. K. limma powers differential expression analyses for RNA-

sequencing and microarray studies. Nucleic Acids Research 43, 7 (2015), e47.

[123] Robinson, S. W., Fernandes, M., and Husi, H. Current advances in

systems and integrative biology. Computational and Structural Biotechnology

Journal 11, 18 (Aug. 2014), 35–46.

[124] Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and

validation of cluster analysis. Journal of computational and applied mathematics

20 (1987), 53–65.

[125] Rustici, G., Kolesnikov, N., Brandizi, M., Burdett, T., Dylag, M.,

Emam, I., Farne, A., Hastings, E., Ison, J., Keays, M., Kurbatova,

N., Malone, J., Mani, R., Mupo, A., Pereira, R. P., Pilicheva, E.,

Rung, J., Sharma, A., Tang, Y. A., Ternent, T., Tikhonov, A.,

Welter, D., Williams, E., Brazma, A., Parkinson, H., and Sarkans,

U. ArrayExpress update–trends in database growth and links to data analysis

tools. Nucleic Acids Research 41, D1 (2013), D987–D990.

[126] Sarangarajan, R., and Boissy, R. E. TYRP1 and oculocutaneous al-

binism type 3. Pigment cell research 14, 6 (2001), 437–444.

[127] Schaefer, C., Anthony, K., Krupa, S., Buchoff, J., Day, M., Han-

nay, T., and Buetow, K. PID: the Pathway Interaction Database. Nucleic

Acids Research 37, Database issue (2009), D674–D679.



www.manaraa.com

95

[128] Serpedin, E., Chen, T., and Rajan, D. Mathematical Foundations for

Signal Processing, Communications, and Networking. CRC Press, Dec. 2011.

[129] Sethupathy, P., Corda, B., and Hatzigeorgiou, A. G. TarBase: A

comprehensive database of experimentally supported animal microRNA targets.

RNA 12, 2 (Feb. 2006), 192–197.

[130] Shai, R., Shi, T., Kremen, T. J., Horvath, S., Liau, L. M., Clough-

esy, T. F., Mischel, P. S., and Nelson, S. F. Gene expression profiling

identifies molecular subtypes of gliomas. Oncogene 22, 31 (2003), 4918–4923.

[131] Sharma, S., Wagh, S., and Govindarajan, R. Melanosomal proteins–role

in melanin polymerization. Pigment cell research 15, 2 (2002), 127–133.

[132] Shen, R., Olshen, A. B., and Ladanyi, M. Integrative clustering of

multiple genomic data types using a joint latent variable model with application

to breast and lung cancer subtype analysis. Bioinformatics 25, 22 (2009), 2906–

2912.

[133] Shi, Z., Wang, J., and Zhang, B. NetGestalt: integrating multidimensional

omics data over biological networks. Nature Methods 10, 7 (2013), 597–598.

[134] Shojaie, A., and Michailidis, G. Analysis of Gene Sets Based on the Un-

derlying Regulatory Network. Journal of Computational Biology 16, 3 (2009),

407–426.

[135] Smyth, G. K. Limma: linear models for microarray data. In Bioinformatics

and Computational Biology Solutions Using R and Bioconductor, R. Gentleman,

V. Carey, S. Dudoit, R. Irizarry, and W. Huber, Eds. Springer, New York, 2005,

pp. 397–420.



www.manaraa.com

96

[136] Stessman, H. A., Bernier, R., and Eichler, E. E. A Genotype-First

Approach to Defining the Subtypes of a Complex Disease. Cell 156, 5 (Feb.

2014), 872–877.

[137] Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S.,

Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L.,

Golub, T. R., Lander, E. S., and Mesirov, J. P. Gene set enrichment

analysis: a knowledge-based approach for interpreting genome-wide expression

profiles. Proceeding of The National Academy of Sciences of the Unites States

of America 102, 43 (2005), 15545–15550.

[138] Tan, P. K., Downey, T. J., Spitznagel Jr, E. L., Xu, P., Fu, D.,

Dimitrov, D. S., Lempicki, R. A., Raaka, B. M., and Cam, M. C.

Evaluation of gene expression measurements from commercial microarray plat-

forms. Nucleic Acids Research 31, 19 (2003), 5676–5684.
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The identification of pathways that are involved in a particular phenotype helps

us understand the underlying biological processes. Traditional pathway analysis tech-

niques aim to infer the impact on individual pathways using only mRNA levels. How-

ever, recent studies showed that gene expression alone is unable to capture the whole

picture of biological phenomena. At the same time, MicroRNAs (miRNAs) are newly

discovered gene regulators that have shown to play an important role in diagnosis,

and prognosis for different types of diseases. Current pathway analysis techniques

do not take miRNAs into consideration. In this project, we investigate the effect of

integrating miRNA and mRNA expression in pathway analysis. In order to analyze

biological pathways using miRNA expression data, we developed a novel method that

augments KEGG pathways with microRNAs targeting genes. To validate our method,

we analyzed nine GEO datasets. We also performed the analyses using just mRNA as

well as using the integrative state-of-the-art method (microGraphite) to compare the

results. In each case, we monitored the position of the pathway describing the given

condition. We observed that our method outperforms the state-of-the-art approach.
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